Search results for "Elliptic equation"
showing 10 items of 41 documents
Recovering a variable exponent
2021
We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.
Bounded solutions to the 1-Laplacian equation with a critical gradient term
2012
On elliptic equations involving the 1-Laplacian operator
2018
El objetivo de esta tesis doctoral es dar a conocer los resultados obtenidos sobre existencia, unicidad y regularidad de las soluciones de diferentes ecuaciones elípticas regidas por el operador 1-laplaciano. El primer capítulo está dedicado al estudio de la ecuación - div (Du/|Du|) + g(u) |Du| = f(x) en un subconjunto abierto y acotado U de R^N con frontera Lipschitz, con la condición de Dirichlet u=0 en la frontera, tomando una función f positiva y siendo g una función real, continua y positiva. Por un lado, obtenemos soluciones no acotadas cuando el dato f pertenece al espacio de Marcinkiewicz L^{N,\infty}(U), por lo que debemos introducir la definición apropiada para este tipo de soluci…
On the regularity of very weak solutions for linear elliptic equations in divergence form
2020
AbstractIn this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .
Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method
2017
For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.
Symmetrization for singular semilinear elliptic equations
2012
In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence
2016
The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.
Comparison results for Monge - Ampère type equations with lower order terms
2003
In this paper we deal with Monge-Ampère type equations in two dimensions and, using the symmetrization with respect to the perimeter, we prove some comparison results for solutions of such equations involving the solutions of conveniently symmetrized problems.
Holder continuity of solutions for a class of nonlinear elliptic variational inequalities of high order
2001
Some recent results on a singular p-laplacian equations
2022
Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.