Search results for "Elliptic equation"

showing 10 items of 41 documents

Recovering a variable exponent

2021

We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.

non-standard growthvariable exponentelliptic equationGeneral Mathematicsquasilinear equationinversio-ongelmatCalderón's problemMathematics - Analysis of PDEsapproximation by polynomialsFOS: Mathematics34A55 (Primary) 41A10 34B15 28A25 (Secondary)inverse problemapproksimointiMüntz-Szász theoremdifferentiaaliyhtälötAnalysis of PDEs (math.AP)Documenta Mathematica
researchProduct

Bounded solutions to the 1-Laplacian equation with a critical gradient term

2012

General MathematicsBounded functionMathematical analysisLaplace operator1-laplacian; degenerate elliptic equations; functions of bounded variations; gradient term with natural growthMathematicsTerm (time)Asymptotic Analysis
researchProduct

On elliptic equations involving the 1-Laplacian operator

2018

El objetivo de esta tesis doctoral es dar a conocer los resultados obtenidos sobre existencia, unicidad y regularidad de las soluciones de diferentes ecuaciones elípticas regidas por el operador 1-laplaciano. El primer capítulo está dedicado al estudio de la ecuación - div (Du/|Du|) + g(u) |Du| = f(x) en un subconjunto abierto y acotado U de R^N con frontera Lipschitz, con la condición de Dirichlet u=0 en la frontera, tomando una función f positiva y siendo g una función real, continua y positiva. Por un lado, obtenemos soluciones no acotadas cuando el dato f pertenece al espacio de Marcinkiewicz L^{N,\infty}(U), por lo que debemos introducir la definición apropiada para este tipo de soluci…

total variation termdynamical boundary conditionsl-laplacian operatornonlinear elliptic equations
researchProduct

On the regularity of very weak solutions for linear elliptic equations in divergence form

2020

AbstractIn this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .

osittaisdifferentiaaliyhtälötPure mathematicsvery weak solutionsApplied MathematicsWeak solution010102 general mathematicselliptic equations01 natural sciencesOmegaModulus of continuity010101 applied mathematicsElliptic curve0101 mathematicsDivergence (statistics)AnalysisMathematics
researchProduct

Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method

2017

For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.

System of elliptic equationDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsSystem of linear equations01 natural sciences(pq)-Laplacian010101 applied mathematicsSubsolution-supersolution and gradient dependenceSettore MAT/05 - Analisi MatematicaHomogeneousDiscrete Mathematics and CombinatoricsRectangle0101 mathematicsLaplace operatorAnalysisDirichlet problemMathematicsDiscrete & Continuous Dynamical Systems - S
researchProduct

Symmetrization for singular semilinear elliptic equations

2012

In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Dirichlet problemSharp a priori estimatesSemilinear elliptic equationsMathematics::Operator AlgebrasApplied MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsComparison resultsSymmetrizationGeodetic datumElliptic curveSettore MAT/05 - Analisi MatematicaMathematics::K-Theory and HomologySymmetrizationMathematics
researchProduct

A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence

2016

The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.

Control and Optimization01 natural sciencesElliptic boundary value problemsymbols.namesakeDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principleBoundary value problemparametric problem0101 mathematicssystem of elliptic equationsMathematicsDirichlet problemDirichlet problem010102 general mathematicsMathematical analysisDirichlet's energyMathematics::Spectral Theory(pq)-LaplacianComputer Science Applications010101 applied mathematicsGeneralized Dirichlet distributionDirichlet boundary conditionSignal ProcessingsymbolsAnalysis
researchProduct

Comparison results for Monge - Ampère type equations with lower order terms

2003

In this paper we deal with Monge-Ampère type equations in two dimensions and, using the symmetrization with respect to the perimeter, we prove some comparison results for solutions of such equations involving the solutions of conveniently symmetrized problems.

RearrangementsMathematics::Complex VariablesIndependent equationApplied MathematicsMathematical analysisMathematics::Analysis of PDEsComparison resultsSymmetrizationLower orderType (model theory)Monge-Ampère equationsPerimeterSettore MAT/05 - Analisi MatematicaSimultaneous equationsFully nonlinear elliptic equationsSymmetrizationAmpereAnalysisMathematics
researchProduct

Holder continuity of solutions for a class of nonlinear elliptic variational inequalities of high order

2001

Variational inequalityWeight functionClass (set theory)Quarter periodHigher-order equationApplied MathematicsMathematical analysisNonlinear degenerate elliptic equation Higher-order equation Variational inequality Weight function;Hölder conditionNonlinear degenerate elliptic equationJacobi elliptic functionsNonlinear systemWeight functionElliptic partial differential equationVariational inequalityAnalysisMathematics
researchProduct

Some recent results on a singular p-laplacian equations

2022

Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.

singular termMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicaquasi-linear elliptic equation gradient dependence singular term entire solution strong solution35-02 35J62 35J75 35J92General Mathematicsgradient dependencestrong solutionFOS: Mathematicsentire solutionquasi-linear elliptic equationAnalysis of PDEs (math.AP)
researchProduct